Medicina antiaging: attualità e prospettive future. Seconda parte


Dermakos 2018; 1: 48-55


1.Allsopp RC, Chang E, Kashefi-Aazam M, Rogaev EI, Piatyszek MA, Shay JW, Harley CB. Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res. 1995 Sep;220(1):194-200

2.Trusina A. Stress induced telomere shortening: longer life with less mutations? BMC Syst Biol. 2014 Mar 1;8:27

3.Dolivo D, Hernandez S, Dominko T. Cellular lifespan and senescence: a complex balance between multiple cellular pathways. Bioessays. 2016 Jul;38 Suppl 1:S33-44

4.Campisi J, Robert L. Cell senescence: role in aging and age-related diseases. Interdiscip Top Gerontol. 2014;39:45-61

5.Byun HO, Lee YK, Kim JM, Yoon G. From cell senescence to age-related diseases:differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep. 2015 Oct;48(10):549-58

6.Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care. 2014 Jul;17(4):324-8

7.Sikora E, Bielak-Zmijewska A, Mosieniak G. Cellular senescence in ageing, age-related disease and longevity. Curr Vasc Pharmacol. 2014;12(5):698-706

8.Rizvi S, Raza ST, Mahdi F. Telomere length variations in aging and age-related diseases. Curr Aging Sci. 2014;7(3):161-7

9.Tedone E, Arosio B, Gussago C, Casati M, Ferri E, et al. Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians’ offspring. Exp Gerontol. 2014 Oct;58:90-5

10.Werner C, Fürster T, Widmann T, Pöss J, Roggia C, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009 Dec 15;120(24):2438-47

11.Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, et a. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian Stroke Prevention Study. J Am Geriatr Soc. 2014 Feb;62(2):222-9

12.Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303(3):250-7

13.Molgora B, Bateman R, Sweeney G, Finger D, Dimler T, Effros RB, Valenzuela HF. Functional assessment of pharmacological telomerase activators in human T cells. Cells. 2013 Jan 14;2(1):57-66 Jesus B.B., Schneeberger K., Vera E., Tejera A., Harley C.B., Blasco M.A. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell. 2011;10:604-621

15.Harley CB, Liu W, Blasco M, Vera E, Andrews WH, Briggs LA, Raffaele JM. A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res. 2011 Feb;14(1):45-56

16.Bär C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Res. 2016 Jan 20;5. pii: F1000 Faculty Rev-89

17.Jäger K, Walter M. Therapeutic Targeting of Telomerase. Genes (Basel). 2016 Jul 21;7(7). pii: E39

18.Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012 Aug;4(8):691-704

19.Nazari-Shafti TZ, Cooke JP. Telomerase Therapy to Reverse Cardiovascular Senescence. Methodist Debakey Cardiovasc J. 2015 Jul-Sep;11(3):172-5

20.Ohtani N, Mann DJ, Hara E. Cellular senescence: its role in tumor suppression and aging. Cancer Sci. 2009 May;100(5):792-7

21.Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016 Jun;6(6):584-93

22.Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017 Mar 8;9(3):955-963

  1. Baar MP, Brandt RM, Putavet DA, Klein JD, Derks KW et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017 Mar 23;169(1):132-147

24.Krimpenfort P, Berns A. Rejuvenation by therapeutic elimination of senescent cells. Cell. 2017 Mar 23;169(1):3-5

25.Schmitt R. Senotherapy: growing old and staying young? Pflugers Arch. 2017 Apr 7. doi: 10.1007/s00424-017-1972-4. [Epub ahead of print]

26.Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi Jet al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016 Jan;22(1):78-83

27.Tad Friend. Silicon Valley’s quest to live forever. The New Yorker. April 3 2017

28.Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016 Jul 1;353(6294):aac4354

29.Sala AJ, Bott LC, Morimoto RI. Shaping proteostasis at the cellular, tissue, and organismal level. J Cell Biol. 2017 Apr 11. pii: jcb.201612111. doi: 10.1083/jcb.201612111. [Epub ahead of print]

30.Radwan M, Wood RJ, Sui X, Hatters DM. When proteostasis goes bad: Protein aggregation in the cell. IUBMB Life. 2017 Feb;69(2):49-54

31.Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, Cashman NR, Wilson MR, Ecroyd H. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem. 2016 May;137(4):489-505

32.Díaz-Ruiz A, Guzmán-Ruiz R, Moreno NR, García-Rios A, Delgado-Casado N, Et al. Proteasome dysfunction associated to oxidative stress and proteotoxicity in adipocytes compromises insulin sensitivity in human obesity. Antioxid Redox Signal. 2015 Sep 1;23(7):597-612. doi: 10.1089/ars.2014.5939

33.Rizzi F, Trougakos IP, Pintus G, Sykiotis GP. Redox Status and proteostasis in ageing and disease. Oxid Med Cell Longev. 2016;2016:7476241

34.Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med. 2015 Dec;21(12):1406-15

35.Jeng W, Lee S, Sung N, Lee J, Tsai FT. Molecular chaperones: guardians of the proteome in normal and disease states. F1000Res. 2015 Dec 15;4. pii: F1000 Faculty Rev-1448.

36.Pluquet O, Pourtier A, Abbadie C. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am J Physiol Cell Physiol. 2015 Mar 15;308(6):C415-25

37.Ryoo HD. Long and short (timeframe) of endoplasmic reticulum stress-induced cell death. FEBS J. 2016 Oct;283(20):3718-3722

38.Radhakrishnan, S.K., W. den Besten, and R.J. Deshaies. 2014. p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife. 3:e01856.

39.Kensler, T.W., N. Wakabayashi, and S. Biswal. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47:89–116

40.Vega H, Agellon LB, Michalak M. The rise of proteostasis promoters. IUBMB Life. 2016 Dec;68(12):943-954

41.Vang S, Longley K, Steer CJ, Low WC. The unexpected uses of Urso- and Tauroursodeoxycholic Acid in the treatment of non-liver diseases. Glob Adv Health Med. 2014 May;3(3):58-69

42.Yoon YM, Lee JH, Yun SP, Han YS, Yun CW, et al. Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein. Sci Rep. 2016 Dec 22;6:39838

43.Kolb PS, Ayaub EA, Zhou W, Yum V, Dickhout JG, Ask K. The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis. Int J Biochem Cell Biol. 2015 Apr;61:45-52

44.Shen LR, Parnell LD, Ordovas JM, Lai CQ. Curcumin and aging. Biofactors. 2013  Jan-Feb;39(1):133-40

45.Ali RE, Rattan SI. Curcumin’s biphasic hermetic response on proteasome activity and heat-shock protein synthesis in human keratinocytes. Ann N Y Acad Sci 2006;1067,394-399

46.Kosuru R, Rai U, Prakash S, Singh A, Singh S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur J Pharmacol. 2016 Oct 15;789:229-43

47.Papaevgeniou N, Sakellari M, Jha S, Tavernarakis N, Holmberg CI, et al. 18α-Glycyrrhetinic Acid Proteasome Activator Decelerates Aging and Alzheimer’s Disease Progression in Caenorhabditis elegans and Neuronal Cultures. Antioxid Redox Signal. 2016 Dec 1;25(16):855-869

48.Jang J, Wang Y, Kim HS, Lalli MA, Kosik KS. Nrf2 a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2014; 32:2616–2625.

49.Katsiki M,Chondrogianni N, Chinou I, Rivett AJ, Gonos ES. The olive constituent oleuropein exhibits proteasome stimulatory properties In vitro and confers lifespan extension of human embryonic fibroblasts. Rejuv Res 2007;10: 157–172

50.Tanigawa S, Fujii M, Hou DX Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 2007 42:1690–1703

51.Hajieva P. The Effect of Polyphenols on Protein Degradation Pathways: Implications for Neuroprotection. Molecules. 2017 Jan 19;22(1)

52.Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, et al. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev. 2015 Sep;23(Pt A):37-55

53.Vega H, Agellon LB, Michalak M. The rise of proteostasis promoters. IUBMB Life. 2016 Dec;68(12):943-954

54.CabreiroF, Perichon M, Jatje J Malavolta M, Mocchegiani E et al  Zinc supplementation in the elderly subjects: effect on oxidized protein degradation and repair systems in peripheral blood lymphocytes. Exp. Gerontol. 2008 43:483–487

55.Spang N, Feldmann A, Huesmann H, Bekbulat F, Schmitt V ET AL. RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy. 2014;10(12):2297-309

56.Bhukel A, Madeo F, Sigrist SJ. Spermidine boosts autophagy to protect from synapse aging. Autophagy. 2017 Feb;13(2):444-445

57.Luo J, Wu M, Gopukumar D, Zhao Y. Big Data Application in Biomedical Research and Health Care: A Literature Review. Biomed Inform Insights. 2016 Jan 19;8:1-10

58.Opap K, Mulder N. Recent advances in predicting gene-disease associations. F1000Res. 2017 Apr 26;6:578

59.Feero WG, Guttmacher AE, Collins FS. Genomic medicine—an updated primer. N Engl J Med. 2010;362:2001–2011

60.Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017 Apr;7(4). pii:170019

61.Zhang F, Lupski JR. Non-coding genetic variants in human disease. Hum Mol Genet. 2015 Oct 15;24(R1):R102-10

62.Ng PC, Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet. 2006;7:61-80

63.Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS catalog, a curated resource of snp-trait associations. Nucleic Acids Res. 2014;42:D1001-6

64.Ford D, Easton DF, Stratton M, Narod S, Goldgar D et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet. 1998 Mar;62(3):676-89

65.King MC, Marks JH, Mandell JB; New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003 Oct 24;302(5645):643-6

66.Price AL, Spencer CC, Donnelly P. Progress and promise in understanding the genetic basis of common diseases. Proc Biol Sci. 2015 Dec 22;282(1821):20151684

67.Morgan TM, Krumholz HM, Lifton RP, Spertus JA. Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. JAMA. 2007;297:1551-156

68.Maher BS. Polygenic Scores in Epidemiology: Risk Prediction, Etiology, and Clinical Utility. Curr Epidemiol Rep. 2015; 2(4): 239–244

69.Kong SW, Lee IH, Leshchiner I, Krier J, Kraft P, et al; MedSeq Project. Summarizing polygenic risks for complex diseases in a clinical whole-genome report. Genet Med. 2015 Jul;17(7):536-44

70.Desikan RS, Fan CC, Wang Y, Schork AJ, Cabral HJ et al. Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med. 2017 Mar 21;14(3):e1002258


72.Kolata  G. FDA  will allow 23andMe to sell genetic tests for disease risk to consumers. New York Times April 6 2017

73.Luizon MR, Ahituv N. Uncovering drug-responsive regulatory elements. Pharmacogenomics. 2015;16(16): 1829-41

74.Turner RM, Park BK, Pirmohamed M. Parsing interindividual drug variability: an emerging role for systems pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2015 Jul-Aug;7(4):221-41

75.Chan SL, Jin S, Loh M, Brunham LR. Progress in understanding the genomic basis for adverse drug reactions: a comprehensive review and focus on the role of ethnicity. Pharmacogenomics. 2015;16(10):1161-78

76.Rodríguez-Antona C, Taron M. Pharmacogenomic biomarkers for personalized cancer treatment. J Intern Med. 2015 Feb;277(2):201-17

77.Rescigno T, Micolucci L, Tecce MF, Capasso A. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases. Molecules. 2017 Jan 8;22(1). pii: E105

78.Subbiah MT. Nutrigenetics and nutraceuticals: the next wave riding on personalized medicine. Transl Res. 2007; 149(2): 55-61

79.Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture.Mol Aspects Med. 2013 Jul-Aug;34(4):753-64

80.Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015 Oct;16(10):593-610

8[1].Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115

82.Booth LN, Brunet A. The aging epigenome. Mol Cell 2016; 62:728–744

83.Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: Linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015;16:593–610

84.López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017 May 25. doi: 10.1159/000477209. [Epub ahead of print]

85.Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016 Jul 29;2(7):e1600584

86.Zampieri M, Sekar K, Zamboni N, Sauer U. Frontiers of high-throughput metabolomics. Curr Opin Chem Biol. 2017 Feb;36:15-23

87.Lévesque A, Gagnon-Carignan S, Lachance S. From low- to high-throughput analysis. Bioanalysis. 2016;8(2):135-4

88.Braun R. Systems analysis of high-throughput data. Adv Exp Med Biol.2014;844:153-87

89.Mendelsohn AR, Larrick JW, Lei JL. Rejuvenation by partial reprogramming of the epigenome. Rejuvenation Res. 2017 Apr;20(2):146-150

90.Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B et al.  Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol. 2015 Jun;172(11):2756-68

91.Declerck K, Vel Szic KS, Palagani A, Heyninck K, Haegeman G, et al. Epigenetic control of cardiovascular health by nutritional polyphenols involves multiple chromatin-modifying writer-reader-eraser proteins. Curr Top Med Chem. 2016;16(7):788-806

92.Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, Santoro A, Franceschi C, Garagnani P. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev. 2014 Mar-Apr;136-137:101-15

93.Harada T, Hideshima T, Anderson KC. Histone deacetylase inhibitors in multiple myeloma: from bench to bedside. Int J Hematol. 2016 Sep;104(3):300-9

94.Ahmed AS, Sheng MH, Wasnik S, Baylink DJ, Lau KW. Effect of aging on stem cells. World J Exp Med. 2017 Feb 20;7(1):1-10

95.Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14452-9

96.Trojahn Kølle SF, Oliveri RS, Glovinski PV, Elberg JJ, Fischer-Nielsen A, Drzewiecki KT. Importance of mesenchymal stem cells in autologous fat grafting: a systematic review of existing studies. J Plast Surg Hand Surg. 2012 Apr;46(2):59-68

97.Tedeschi A, Lacarrubba F, Micali G. Mesotherapy with an intradermal hyaluronic acid formulation for skin rejuvenation: an intrapatient, placebo-controlled, long-term trial using high-frequency ultrasound. Aesthetic Plast Surg. 2015 Feb;39(1):129-33

98.Park KY, Seok J, Rho NK, Kim BJ, Kim MN. Long-chain polynucleotide filler for skin rejuvenation: efficacy and complications in five patients. Dermatol Ther.2016 Jan-Feb;29(1):37-40

99.Abuaf OK, Yildiz H, Baloglu H, Bilgili ME, Simsek HA, Dogan B. Histologic evidence of new collagen formulation using platelet rich plasma in skin rejuvenation: a prospective controlled clinical study. Ann Dermatol. 2016 Dec;28(6):718-724

100.Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663-76

101.Li M, Izpisua Belmonte JC. Looking to the future following 10 years of induced pluripotent stem cell technologies. Nat Protoc. 2016 Sep;11(9):1579-85.

102.Baranek M, Markiewicz WT, Barciszewski J. Selected small molecules as inducers of pluripotency. Acta Biochim Pol. 2016;63(4):709-716

103.Ma X, Kong L, Zhu S. Reprogramming cell fates by small molecules. Protein Cell. 2017 Feb 17. doi: 10.1007/s13238-016-0362-6 [Epub ahead of print]

104.Seo BJ, Hong YJ, Do JT. Cellular reprogramming using protein and cell-penetrating peptides. Int J Mol Sci. 2017 Mar 3;18(3). pii: E55

105.Adlakha YK, Seth P. The expanding horizon of MicroRNAs in cellular reprogramming. Prog Neurobiol. 2017 Jan;148:21-39

106.Mandal PK, Rossi DJ. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat Protoc. 2013 Mar;8(3):568-82

107.Brix J, Zhou Y, Luo Y. the epigenetic reprogramming roadmap in generation of iPSCs from somatic cells. J Genet Genomics. 2015 Dec 20;42(12):661-70

108.Liang G, Zhang Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 2013 Jan;23(1):49-69

109. Pareja-Galeano H, Sanchis-Gomar F, Pérez LM, Emanuele E, Lucia A et al.  iPSCs-based anti-aging therapies: Recent discoveries and future challenges. Ageing Res Rev. 2016 May;27:37-41

110.Rando TA, Chang HY. Aging, rejuvenation and epigenetic reprogramming: resetting the aging clock. Cell 2012;148:46-57

111.Freije, J.M. and Lopez-Otin, C. Reprogramming aging and progeria. Curr. Opin. Cell Biol. 22012;4:757-764

112.Shimamoto A. Kagawa H, Zensho K, Sera Y, Kazuki Y et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoSOne 2014;9, e112900

113. Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL et al.  Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature. 2011 Apr 14;472(7342):221-5

114.Ocampo A, Reddy P, Izpisua Belmonte JC. Anti-aging strategies based on cellular reprogramming. Trends Mol Med. 2016 Aug;22(8):725-38

115.Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo  A, Hatanaka F, Hishida T, et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 2016; 167:1719-1733

116.Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 2013;502:340-345

117.Mendelsohn AR, Larrick JW, Lei JL. Rejuvenation by partial reprogramming of the epigenome. Rejuvenation Res. 2017 Apr;20(2):146-150 Lázaro I, Kostarelos K. Engineering cell fate for tissue regeneration by in vivo transdifferentiation. Stem Cell Rev. 2016 Feb;12(1):129-39

119.Honoki K. Preventing aging with stem cell rejuvenation: Feasible or infeasible? World J Stem Cells. 2017 Jan 26;9(1):1-8

120.Bitto A, Kaeberlein M. Rejuvenation: it’s in our blood. Cell Metab. 2014 Jul 1;20(1):2-4

121.Castellano JM, Kirby ED, Wyss-Coray T. Blood-Borne Revitalization of the Aged Brain. JAMA Neurol. 2015 Oct;72(10):1191-4.

122.Rebo J, Mehdipour M, Gathwala R, Causey K, Liu Y, Conboy MJ, Conboy IM. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016 Nov 22;7:13363

123.Conboy IM, Conboy MJ, Rebo J. Systemic Problems: a perspective on stem cell aging and rejuvenation. Aging (Albany NY). 2015 Oct;7(10):754-65

124.Conboy MJ, Conboy IM, Rando TA. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity.Aging Cell. 2013 Jun;12(3):525-3

125.Hall SS. Young blood. Science. 2014 Sep 12;345(6202):1234-7

126.Freitas-Rodríguez S, Rodríguez F, Folgueras AR. GDF11 administration does not extend lifespan in a mouse model of premature aging. Oncotarget. 2016 Aug 30;7(35):55951-55956

127.Sun H, Wang Y. The elusive philosopher’s stone in young blood. Circ Res. 2015 Nov 6;117(11):906-8

128.Kiprov DD. Intermittent heterochronic plasma exchange as a modality for Delaying cellular senescence-a hypothesis. J Clin Apher. 2013 Dec;28(6):387-9

129.Middeldorp J, Lehallier B, Villeda SA, Miedema SS, Evans E, et al. Preclinical assessment of young blood plasma for alzheimer disease. JAMA Neurol. 2016 Nov 1;73(11):1325-1333

130.Aicardi G. Young Blood Plasma Administration to Fight Alzheimer’s Disease? Rejuvenation Res. 2017 Apr 6. doi:10.1089/rej.2017.1940. [Epub ahead of print]

131.McGilvray A. Ageing: Restoration project. Nature. 2016 Mar 3;531(7592):S4-5

132.Kaiser J. BIOMEDICINE. Anti-aging trial using young blood stirs concerns. Science. 2016 Aug 5;353(6299):527-